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Fracture mechanics model for subthreshold 
indentation flaws 
Part II Non-equilibrium fracture 
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Ceramics Division, National Institute of Standards and Technology, Gaithersburg, 
MD 20899, USA 

In Part II of this two-part study we extend the shear-fault-microcrack model to non-equilib- 
rium fracture, to allow for rate effects in the critical instability configurations in chemically 
interactive environments. The "calibrated" K-fields of Part I are combined with independently 
evaluated crack velocity functions to determine kinetic conditions for microcrack extension. 
The analysis enables evaluation of (i) a time delay in radial crack pop-in from a subthreshold 
flaw; (ii) a time dependence in the strength characteristics, in both the subthreshold and 
postthreshold domains. Comparisons with delayed pop-in and strength-stressing-rate literature 
data for silicate glasses in moist environments indicate that the analysis is capable of 
quantitative predictions of kinetic characteristics. In the strength data, the model accounts for 
the relatively high magnitudes, scatter and fatigue susceptibilities in the subthreshold region. 

1. Introduct ion  
In Part I we developed a shear-fault-radial-crack 
model for the critical pop-in and associated strength 
properties of surfaces with indentation flaws under 
conditions of equilibrium fracture [1]. Now we extend 
the analysis to non-equilibrium fracture. In particular, 
we address the kinetics of delayed pop-in [2, 3] 
and rate-dependent strength degradation of Vickers- 
indented glass surfaces [4-9] on exposure to moist 
environments, phenomena of much relevance to the 
mechanical integrity of ultra-high-strength brittle 
components. 

Our approach is straightforward. We use the equi- 
librium parametric fits to experimental data in Part I 
as a "calibration" of the residual-contact and applied- 
stress K-fields, and introduce the rate dependence 
through an independently determined crack velocity 
function v = rIG(K)] (G is the mechanical energy- 
release rate). In this way we can predetermine the 
complete time evolution of microcrack growth in 
specified moisture-containing environments, with or 
without applied stress. 

The model will be used to confirm the highly 
deleterious effects of water-containing environments 
in the subthreshold region. Specific attention will be 
directed to the observation that pop-in can occur from 
a subthreshold flaw well after completion of the in- 
dentation event, at loads lower than those for inert 
environments by as much as an order of magnitude; 
and that strength-stressing-rate (fatigue) curves for 
subthreshold flaws have significantly higher slopes 

than their postthreshold counterparts, with corres- 
pondingly greater scatter in data. It will also be used 
to explain differences in non-equilibrium fracture be- 
haviour of normal (soda-lime) and anomalous (fused 
silica) glasses. 

2. Incorporation of kinetics into fracture 
mechanics model 

In this section we indicate how the K-field analysis of 
Part I may be combined with a crack velocity function 
to predict the kinetic aspects of crack initiation and 
strength. 

2.1. K-fields 
Recall from Part I the essence of our indentation shear 
fault model: that there exists a residual driving force, 
with shear and tensile components, on the post- 
indentation radial microcrack; and that this force is 
augmented by corresponding components from a sub- 
sequently applied external stress er A . The net driving 
force on the crack is given by Equation 1 in Part  I 

K(c, a, [3, erA) = Hal/Z{[~x f~(c/a,  [3) 

+ (CYA/O~ 13)] 2 

+ [~sfS(c/a,  [3) 

+ (C~A/ero)~sfS(c/a, 13)]z}I/a  
(1) 
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with c the crack size, a the indentation half-diagonal, 
13 a normalized coordinate locating the shear fault 
within the contact impression; H the hardness and c~ ~ 
a reference strength (Tables I and II, Part  I); the 
terms are coefficients which determine the intensity of 
the K-fields (Table II, Part  I), and the f terms are 
crack-size functions (Equations 8, 9, 15 and 16, Part I). 

2.2. Crack  ve loc i t y  f u n c t i o n s  for g l a s se s  
The first step in extending the model of Part  I to non- 
equilibrium properties is to introduce suitable crack 
velocity functions for the glasses for which kinetic data 
are available, namely soda-lime and fused silica. There 
is a considerable literature on the velocity character- 
istics of these and other silicate glasses. Here we adopt 
a set of phenomenological  relations which can be 
fitted to existing velocity data, and which can then be 
used to compute crack velocities in gaseous environ- 
ments of any specified relative humidity and in water. 
The velocity relations for active environment assume 
the general functional form in the region K < Kc = To 

v = v { G E K ( c ) ] ,  R) (2) 

where R is relative humidity and G the mechanical- 
energy-release rate a t  the crack tip. These velocity 
functions connect to the K-field in Equation 1 via the 
familiar plane strain relation [10] 

G = K2(1 -- V2)/E (3) 

where E is Young's modulus and v Poisson's 
ratio. Details of the functions v{G[K(c)], R}, which 
embrace three regions of the v-G curve and (in 
soda-lime glass) exhibit a threshold, are given in the 
Appendix. 

We also determine in the Appendix appropriate 
coefficients in the velocity functions by fitting to 
selected data for soda-lime glass and fused silica from 
the literature. It should be stated at the outset that v-G 
data are notoriously difficult to reproduce in absolute 
terms, and probably carry an uncertainty in velocity of 
at least an order of magnitude at any specified G value, 
even more so as we attempt to extrapolate the fitted 
curves beyond the measured data range. 

2 .3 .  D i f f e r e n t i a l  E q u a t i o n  for  K i n e t i c  
Crack G r o w t h  

Now we combine the K-field and crack velocity rela- 
tions into a formalism for non-equilibrium crack 
growth in the load-time fields P(t) and ~A(t) shown in 
Fig. 1. The quantities 7"1, T2 and T3 define the contact 
duration, post-indentation interval, and time to failure 
at constant applied stressing rate, respectively. The 
quaiatities t', t" = t' - T~ and t'" = t" - T 2 = t' 

- (7"1 + T2) define time coordinates within these in- 
tervals. For  P(t), we assume a square pulse; for ~A(t) ,  

we consider the function ( ~ A ( t ) =  t~At'" at stressing 
rates (~A = constant ("dynamic fatigue"). 

o _.1 

P ( t )  
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Figure 1 Schematic showing indentation load-time (P-t) pulse over 
duration T1, subsequent post-indentation interval T2, and ultimate 
applied stress-time (OA--t) loading to failure over T 3. Origins in time 
coordinates t', t " = t ' - T  1 and t ' " = t " - T  2 = t ' - ( T  1+T2) ,  
measured from the start of contact, of the post-indentation interval, 
and the applied stress cycle, respectively. Configurations of interest 
are: "delayed" pop-in, 0 < t~ < T2; "fatigue" strength o F at t';' 
= T3, for postthreshold (t~ < T2) and subthreshold (t~ > T2) in- 

dentations. 

Accordingly, Equations 1 to 3 lead to a differential 
equation of the general functional form 

dc(t)/dt = v = F{K[c(t),  a, ~, C~a(t)], R} (4) 

This relation has to be solved for c(t) at a given stress- 
time function CrA(t ). We are specifically interested in 
two cases: 

(i) Pop-in, cy A = 0. In the absence of applied stress, 
chemistry can cause a subthreshold microcrack to 
pop-in some critical time t~ after completion of the 
indentation cycle, under the action of indentation 
stresses alone. Again, we recall from Part I 
(Section 3.2) that there exists a dominant compressive 
stress component in the elastic contact field which 
effectively suppresses crack growth at peak contact 
load through the duration TI*, corresponding to an 
initial condition t ' =  0, KR = 0 in the differential 
Equation 4. Then t~ is evaluated as the time for a 
subcritidal microcrack to grow from a shear fault at 
c = 13a (Fig. 3, Part I) in the full post-indentation K R- 
field to final instability at KR = Kc = To, dK/dc > O. 

(ii) Strength, C~F = ~A T3 at stressing rate ~r A = con- 
stant, corresponding to conditions under which 
"dynamic fatigue" strengths are measured. The post- 
indentation crack is allowed to evolve an amount Ac 
in the residual field during the interval T 2 prior to 
strength testing. (This growth stage turns out to be 
significant in the ultimate strength evaluation only as 
one approaches the intermediate, subthreshold acti- 
vated region of Fig. 9 in Part I.) For subthreshold 
indentations, the solution is evaluated as the time T3 
for the microcrack initially at t "  = 0, cr A = 0 to grow 
from c = 13a + Ac at prescribed (~A to  final failure; for 

* This elastic compressive component  actually reduces below its residual tensile counterpart  at some point on the unloading half-cycle 
(at ~ 0.3 peak load in soda-lime glass [3]; we avoid such complication by considering only a square load-time pulse, as indicated in Fig. 1. 
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postthreshold indentations, the procedure is the same 
but the initial crack size is determined as c = c2 + Ac 
(Fig. 7, Part I). 

2.4. Numerical algori thm for solut ion 
of differential equation 

The differential Equation 4 has no general analytical 
solution for the multi-region velocity functions de- 
fined in the Appendix. We use a numerical algorithm 
to increment crack size c and time t in a Runge-Kutta 
stepwise integration procedure, in accordance with 
prescribed sets of parameters 7"1, Tz, a, ~3, 6A, appro- 
priately adjusting K(c, t) at each step. The particular 
incrementing procedures used to handle the great 
range of crack velocities encountered in the typical 
evolution to failure is a modification of those de- 
scribed in an earlier study on the fatigue properties of 
indentation flaw systems [11]. 

An important element in our algorithm is the 
provision to allow properly for multiple pop-in 
instabilities in the crack evolution. For delayed pop-in 
under the action of the residual field K R alone, i.e. 
case (i) in the preceding subsection, there is just one 
such instability. For crack growth in the superposed 
field of the subsequently applied stress, case (ii) above, 
the possibility exists for an intermediate jump-arrest 
stage, followed by an interval of stable growth, in the 
evolution to failure. Accordingly, a routine which 
continues to test for the instability condition 
dK/dc > 0 after each pop-in stage is used to ensure 
that an unlimited failure configuration is attained. 

3. Comparison of theory and experiment 
Now we compare predictions from the "calibrated" 
differential equation, i.e. using K-field parameters 
from the equilibrium data fits in Part I and crack 
velocity parameters from the independent data fits in 
the Appendix, with observed radial crack pop-in and 
strength data for soda-lime and fused silica glasses in 
moist environments. 

3.1. Delayed  pop- in  
Experimental data t~ (a) for delayed pop-in for the two 
glasses [2, 3, 12] are shown in Fig. 2. These data were 
taken using a square P(t) indentation load pulse, at 
prescribed contact durations Tz, in accordance with 
the theoretical prescription in Fig. 1. The indentations 
were made in nitrogen (inert), air (50% relative humid- 
ity) and water, and maintained in those environments 
until pop-in occurred. Each data point in Fig. 2 is a 
50% cumulative probability value. Data scatter bands 
are considerable, ranging over as much as two orders 
of magnitude in time at _+ 25% probability bounds, 
and are therefore omitted from the plots for clarity. 
The data for fused silica relative to soda-lime in air 
reflect a characteristic difference between the two glass 
types: in anomalous glasses pop-in is much more 
a b r u p t -  it tends to occur almost immediately on 
completion of indentation or not at all. In nitrogen, 
any persistent kinetic effect is attributable to trace 
water vapour. 

The theoretical fits for each glass and environment 
are generated as described in the previous section, for 
mean 13 = 0.923. (Comparative plots using extreme 
values 13 = 0.846 and 1 indicate a wide scatter in pop- 
in times, consistent with the experimental observation, 
but are again omitted from Fig. 2 for clarity.) 
Especially notable are the order-of-magnitude reduc- 
tions in the critical pop-in loads in moist air relative to 
nitrogen; these reductions are even greater in water 
(and may be reduced still further in acidic aqueous 
solutions [13]). Note also the tendency to a cutoff 
load below which pop-in does not occur, especially 
abrupt for fused silica, in accordance with the experi- 
mental observation. 

At the same time, notwithstanding the scatter in the 
data, there are apparent discrepancies between theory 
and experiment, notably in soda-lime glass, that bear 
mention. First, the data set for the water curve lies well 
below the predicted curve. Second, the data set for air 
at the shortest contact duration (T 1 = 0.1 s) appear 
to fall systematically above the predicted curve. These 
trends imply that time and chemistry, factors that we 
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Figure 2 Delayed pop-in for (a) soda- 
lime glass and (b) fused silica in differ- 
ent environments [2, 3, 12]. Data  are 
50% cumulative probability values. 
Tests in air (50% RH) (closed sym- 
bols) at T 1 = 10s (o), T 1 = 1.0s (A) 
and 0.1 s (=); in water (open symbols) 
at T 1 = 10s; nitrogen (data not  
included, owing to excessive scatter 
on time axis). Arrows indicate 
interrupted tests. Full curves are the- 
oretical predictions, for 13 = 0.923. 
(Predicted curves for air and water 
indistinguishable in (b).) 
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have explicitly assumed to be passive during contact, 
must play some role in the development of the residual 
K-field. We shall return to these factors in the 
discussion. 

3.2. S t r e n g t h - s t r e s s i n g - r a t e  curves  
The naost common test procedure for evaluating en- 
vironmental rate effects in lifetimes of intrinsically 
brittle solids, in the context of indentation as well as 
natural flaws, is that of so-called "dynamic fatigue"; 
i.e. strength as a function of stressing rate. Such 
strength data are available for subthreshold and post- 
threshold Vickers indentation flaws in soda-lime and 
fused silica glasses tested in water [4-9, 14, 15]. 

We plot those experimental results as mean and 
s tandard  deviation data points in Figs 3 to 6. The 
indentations in all these cases were made at a contact 
duration Tz ~ 10s and left for an interval 
T2 ~ 60 rain in air before strength-testing in water. 
The soda-lime data were taken exclusively on rod 
specimens; the fused silica postthreshold data on rods, 
subthreshold on fibres. For subthreshold tests, it was 
necessary to use indentation loads below the cut off 
limits in air in Fig. 2, to guard against premature pop- 
in prior to strength testing. 

The curves in Figs 3 to 6 are predictions using 
the numerical algorithm, at [3 = 0.923 (full curves) and 

= 0.846 and 1 (broken curves). At high stressing 
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Figure 3 Fat igue  s t rength  plot ted aga ins t  s t ress ing rate for sub- 
threshold Vickers inden ta t ion  flaws in soda- l ime glass in water  (after 
ageing in air for 60 rain): (a) a = 3.7 lam (P = 0.15 N), (b) a = 4.8 gm 
(P = 0.25 N). D a t a  m e a n s  and  s t an da rd  devia t ions  [5]. Curves  are 
theoret ical  predict ions,  J~ = 0.923 (solid), 0.846 an d  1 (broken). 
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Figure 4 Fat igue  s t rength  p lo t ted  aga ins t  s tressing rate  for (quasi-) 
postthreshold Vickers inden ta t ion  flaws in soda- l ime glass in water  
(after ageing in air for 60 min ,  dur ing  which  interval  pop- in  occurs), 
at a 1 = 4.3 g m  (P = 0.20 N), a 2 = 8.0 g m  (P = 0.70 N), a 3 
= 21.3 g m  (P = 5.0N).  D a t a  m e a n s  and  s t anda rd  devia t ions  

[4, 14]. Curves  are theoret ical  predict ions:  13 = 0.923 (solid); 0.846 
and  1 (broken), shown  for a 1 curve only. 

rates the curves saturate at the inert strength levels, as 
required. At low stressing rates the predicted curves 
tend to flatten out again: for both subthreshold flaws 
(Fig. 3) and postthreshold flaws (Fig. 4) in soda-lime 
glass this flattening is associated with a true threshold 
in the v-G curve (Fig. AI); for the subthreshold flaws 
in fused silica (Fig. 5) the flattening is associated with a 
suppression of the pop-in instability. We shall elabor- 
ate on these limiting regions in the discussion. 

There are clear discrepancies between some of the 
absolute theoretical predictions and experimental 
results in Figs 3 to 6. Notwithstanding these discrep- 
ancies, the predictions are in accord with the major 
trends in the data. As with the inert strength data in 
Part I, the Strengths of specimens with subthreshold 
flaws remain distinctly higher than their postthreshold 
counterparts, and the corresponding scatter is greater. 
In addition, (with due allowance for the different 
strength axes in Figs 3 and 5 as opposed to Figs 4 
and. 6) the slopes of the curves are greater in the 
subthreshold regions, consistent with the reportedly 
enhanced fatigue susceptibility of pristine as opposed 
to non-pristine glass fibres [16-18]. 

4. Discussion 
In this study we have extended the model of Part I to 
include chemically enhanced rate effects in the fracture 
mechanics of indentation flaws. The extended model, 
with suitable incorporation of an independently deter- 
mined crack velocity function, allows us to make 
predictions of (i) delayed radial-crack pop-in times for 
flaws in the subthreshold region, and (ii) the corres- 
ponding strength characteristics at prescribed stres- 
sing rates ('fatigue'). With regard to strength in 
particular, we are able to account for the relatively 
high magnitudes, error bars and susceptibilities that 
distii,guish the subthreshold from its counterpart 
postthreshold domain. 

In making these predictions, we are reliant on the 
accuracy of the calibrations of the ~ terms in the 
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Figure 5 Fatigue strength plotted against stressing rate for subthreshold Vickers indentat ion flaws in fused silica glass in water  (after ageing in 
air 60 rain): (a) a = 3.3 #m (P = 0.15 N), (b) a = 4.2 #m (P = 0.25 N), (c) a = 5.0 jam (P = 0.35 N), (d) a = 6.0 ~tm ( P  = 0.50 N). Data  means  
and s tandard deviations; �9 [8] and ~ [9]. Curves are theoretical predictions, [3 = 0.923 (solid), 0.846 and 1 (broken). 
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Figure 6 Fatigue strength plotted against stressing rate for post- 
threshold (and quasi-post threshold)  Vickers indentat ion flaws in 
fused silica glass in water (after ageing in air 60 rain), indentat ion 
flaw sizes al = 18.2 jam (P = 5 N), a 2 = 26.7 ~tm (P = 10N),  a 3 
= 37.8 jam (P = 20 N), a4 = 60.0 jam (P = 50 N). Data  means and 

s tandard deviations [83. Curves are theoretical predictions: [3 

= 0.923 (solid); 0.846 and 1 (broken), shown for at curve only. 

K-field expressions in Part I, and, more importantly, 
of the parameters in the independently determined 
velocity functions in the Appendix. We have already 
indicated that reproducibility in velocity data to better 
than an order of magnitude is generally not feasible, 
even within the range of available data - it is well 
documented that extrapolations beyond the data 
range can lead to even greater uncertainties in lifetime 

predictions [19]. Such uncertainties, coupled with the 
sensitivity of the mechanics to geometrical details in 
the near-contact region could account largely for the 
observed discrepancies between experimental data 
and theoretical predictions, and cast doubt on the 
validity of the theoretical predictions at the low end of 
the 6- A range in Figs 3 to 6. Accordingly, whereas the 
analysis usefully predicts most of the important gen- 
eral trends in the pop-in and strength characteristics, 
it should be seen as somewhat restricted in its ability 
to predetermine absolute values. 

Keeping these qualifications in mind, we may now 
use the differential equation algorithm to extract more 
detailed information on the kinetics of radial crack 
evolution during thepost-indentation interval and the 
subsequent applied stressing to failure. Thus, we gen- 
erate representative c against t curves for delayed pop- 
in at selected indentation sizes, Fig. 7; and for fatigue 
strength, at selected indentation sizes and stressing 
rates, Fig. 8. These~ diagrams delineate regions of 
instability as vertical discontinuities, and distinguish 
premature pop-in (single arrows) from unlimited fail- 
ure (double arrows) during strength testing. Consider 
these two diagrams separately: 

(i) In Fig. 7, we note that the subthreshold flaws at 
the smallest indentations sizes (at and a 2 in Fig. 7a; at, 
a 2 and a 3 in Fig. 7b) show imperceptible growth over 
the time range plotted, but that the larger flaws all 
pop-in within the interval T2 = 60 rain between in- 
dentation and subsequent strength test, Section 3.2. 
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The pop-in time diminishes rapidly towards zero as 
indentation size a approaches a ~ and ultimately 
exceeds the critical value a*. These results illustrate 
graphically why flaws in the immediate size region 
a < a ~ tend to revert so readily to the postthreshold 
strength domain (Section 4.2, Part I). 

(ii) In Fig. 8a the action of a linearly increasing 
applied stress enhances the crack growth rate, thereby 
diminishing the p0p-in time (cf Fig. 7a), and  generates 
a second, Unlimited (failure) instability. The curves at 
a > a* with spontaneous pop-in and at a < a* with 
intermediate pop-i n (activated failure) fall in the post- 
threshold strength domain. The curves at a ~ a* lie in 
the true subthreshold strength domain. In Fig. 8b we 
note the tendency for the subthreshold cracks at 
a ~ a* to extend over substantially greater subcritical 
distances as the stressing rate ~A diminishes, equival- 
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ent to a transition in failure path from the first to the 
second stable branch of the K(c) function in Fig. 8c of 
Part I. This transition is commensurate with the flat- 
tening out of the fused silica strength data at low dn 
noted earlier in Fig. 5. 

In setting up the kinetic differential equation in 
Section 2.3 we assumed that microcrack extension is 
effectively suppressed during contact, owing to a 
dominant elastic compressive component in the in- 
dentation field at peak load. We also noted, however, 
that the delayed pop-in data for our glasses in Fig. 2 
do show some dependence on contact duration; in 
particular, the soda-lime data in air at T1 = 0.1 s 
appear to  lie systematically above, and the data for 
water systematically below, the theoretical predic- 
tions. In the context of the air data, it has been 
observed that radial crack pop-in may be suppressed 



altogether as the (fixed-load) contact approaches 
(quasistatic) impact times [2]. There are strong im- 
plications here concerning potential rate effects in the 
shear fault configuration itself, which we have ignored 
in our model (recall, for instance, our unconditional 
assumption in Part I that the critical shear fault ex- 
tends fully to the indentation diagonals, regardless of 
contact time). In practice, it is observed that the 
indentation size (e.g. as reflected in the hardness 
[20-22]) and shape [3] are both functions of contact 
time. Qualitatively, the indentation deformation zone 
is more developed, with attendant higher residual field 
intensity, at longer contact times. On the other hand, 
subsequent relaxation processes, e.g. as manifested in 
the time-dependent recovery of the hardness impres- 
sion [21] and the growth of subsidiary (e.g. lateral) 
crack systems [14], can reduce the field intensity in 
the post-indentation period. Incorporation of such 
additional kinetic elements into the shear- 
fault-microcrack micromechanics could go some way 
to explaining our discrepancies. 

Another point of interest is the difference in 
response of normal and anomalous silicate glasses. 
Soda-lime and fused silica glasses have similar hard- 
ness and toughness properties; yet differences in 
kinetic responses are manifest in the results presented 
here. Special reference may be made to the cut offs in 
the t~-a data in Fig. 2. The relative abruptness of this 
cut off for fused silica is partly due to the steeper v-G 
curve, but more importantly to the considerably 
weaker tensile component of the residual stress field 
(as reflected by the considerably more shallow KR(C ) 
function for fused silica in Fig. 11 in Part I relative to 
that for soda,lime in Fig. I0), characteristic of mater- 
ials whose constitutive deformation process contains a 
non-volume conserving component [23, 24]. 

The generality of the formalism used to describe 
the model in the two parts of this study should be 
noted. Extension to other brittle materials which 
exhibit similar shear deformation characteristics in  
indentation, e.g. quartz [3] and sapphire [25], should 
be possible. The essential ingredients for an appropri- 
ate fracture mechanics model remain the same: an 
appropriate K-field calibration (as in Part I); and an 
independently determined crack velocity function. 

5. Conclusions 
The conclusions are as follows: 

(1) The shear-fault-microcrack model in Part I has 
been extended to include kinetics. 

(2) By incorporating an independently determined 
crack velocity function into the calibrated indentation 
K-field relations from Part I, a differential equation 
for predicting the kinetics of radial crack initiation 
and propagation has been obtained. 

(3) Predictions of the times for delayed radial crack 
pop-in from subthreshold Vickers indentations in 
soda-lime and fused silica glasses in specified moist 
environments have been compared with experimental 
data. 

(4) Predictions of the rate dependence of strength as 
a function of stressing rate for indented soda-lime and 

fused silica glasses in water have been compared with 
experimental data, in both the subthreshold and 
postthreshold flaw domains. 

(5) The predictions account for the essential data 
trends in the subthreshold as opposed to post- 
threshold strength data, notably higher strengths, 
greater scatter and increased fatigue susceptibility. 

Appendix: Crack velocity relations 
We use a phenomenological velocity function 
v{G[K(c)], R} to fit literature data for our glass 
systems, for incorporation into the differential equa- 
tion for kinetic crack growth in the text. 

The G range for our function is bounded by well 
defined values of the Dupr6 work of separation: W o in 
inert environment (as defined in Part I); and W E in 
active environment, expressible as an isotherm 
equation [26] 

W E = Wv(sa 0 - A l n ( R )  gas (Ala) 

W E = W L liquid (Alb) 

in the region Wv(sat) ~< W E < Wo, where Wv(sa 0 per- 
tains to saturated vapour (R = 1) and WE (< Wv(~,0) 
to liquid; R(~< 1) is the relative humidity and A a 
constant. The velocity function is a composite of 
relations in the following three regions of behaviour. 

Region I. At low G the crack growth is governed by 
some interaction with environmental species and is 
accordingly sensitive to the concentration. It satisfies 
a relation of the kind 

v I = v o s i n h [ B ( G -  WE) ] G~> W E (A2) 

where vo and B are constants for a given 
material-environment system. Note the provision for 
a threshold at G = WE. (Strictly, at G < W E, the pos- 
sibility exists for vx < 0 in reversible fracture, but we 
set vl = 0 in this region on the grounds that reversible 
crack healing is unlikely to occur to any great extent in 
practical glass systems, [27]) 

Region II. At intermediate G the crack growth in 
gases is governed by diffusion of the environmental 
species along the interface. The relation is 

vii = DRG (A3) 

with D a material constant [10, 26]. 
Region III. At high G the growth is independent of 

environment. It satisfies a relation of the same kind as 
Equation A2, but with very strong dependence on G. 
We simply approximate this function by a cut off 
velocity 

viii = VT (A4) 

at G = Wo, where VT -~ 1 km s-1 is the speed of sonic 
waves. 

The interaction and diffusion processes in regions I 
and II act in series, so the transition between these two 
regions takes the approximate composite form 

1/v = l/vi + 1/vll (A5) 

Selected data for soda-lime glass [28] and fused 
silica [29] are plotted in Fig. A 1. We mention that v-G 
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Figure A1 Crack velocity functions: (a) soda-lime glass, data from [27]; ( i  water, �9 RH = 0.2%, [] RH = 0.017%) (b) fused silica glass, 
data from [28] ( i  water, �9 RH = 20%, �9 RH = 75%). Solid curves are fits to data using crack velocity functions in Appendix (see Table AI 

for fitted parameters). 

T A B  L E A I Values of crack velocity parameters for glasses used in 
this study. From fits to data in Fig. A1 

Soda-lime Fused silica 

W~ (J m -  2) 1.29 0.00 
Wv(sa t )  (J m - 2 ) 1.34 0.145 
A (J m - 2 ) 0.99 1.40 
B ( j m - 2 )  1 2.60 5.83 
D ( m 3 s - l J  -a)  1.07 x 10 -4  1.70 • 10 -4  
v 0 (air) (ms  -z)  2.56 •  -9 ].25 • 10 -14 
v o (water) (ms  -1) 2.02 • 10 -8 1.25 x 10 -14 

data of this type are notoriously variable - reProdu- 
cib!lity of an order of magnitude on any given material 
in any given environment, even in the same laboratory 
by the same worker using the same test geometry, is 
the exception rather, than the norm. The full curves 
represent fits to these data, in accordance with 
Equations A1 to A5. Parameters resulting from these~ 
fits are listed in Table A1. 
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